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Abstract 

The constitutive relationships of the rubber materials that act as the main spring of a hydraulic engine 

mount are nonlinear. In addition to material induced nonlinearity, further nonlinearities may be introduced 

by mount geometry, turbulent fluid behavior, temperature, boundary conditions, decoupler action, and 

hysteretic behavior. In this research all influence the behavior of the system only certain aspects are 

realistically considered using the lumped parameter approach employed. The nonlinearities that are readily 

modeled by the lumped parameter approach constitute the geometry and constitutive relationship induced 

nonlinearity, including hysteretic behavior, noting that these properties all make an appearance in the load-

deflection relationship for the hydraulic mount and may be readily determined via experiment or finite 

element analysis. In this paper we will show that under certain conditions, the nonlinearities involved in the 

hydraulic mounts can show a chaotic response. 
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Introduction 

The automotive engine-chassis-body system may 

undergo undesirable vibration due to disturbances 

from the road and the engine. The engine vibration 

and road-induced vibration at idle are typically at 

frequencies below 50 Hz, while the engine 

oscillations vary from 50 to 200 Hz. Hydraulic engine 

mounts are effective passive vibration isolation 

devices used to isolate these two distinct modes of 

vibration (i.e., low-amplitude- high-frequency and 

high-amplitude-low-frequency) in automotives. A 

typical hydraulic engine mount is designed to have 

high stiffness and damped response for low-frequency 

and large amplitude vibrations. In most cars, the 

engine vibration at 1 to 50 Hz is greater than 0.3 mm 

in amplitude. Conversely, at high-frequency, small 

amplitude vibrations, a hydraulic engine mount is 

designed for low stiffness, and damping 

characteristics (amplitudes less than 0.3 mm at 50-

300 Hz). 

This paper describes the modeling of a simple 

hydraulic engine mount as shown in Figure 1. At the 

top, a hydraulic mount is in contact with the 

automotive engine, and in the bottom it is in contact 

with the chassis. The unit contains rubber components 

on top and bottom, two fluid chambers, an inertia 

track, and a decoupled. 

The fluid in the hydraulic mount is normally water 

containing ethylene glycol. The engine vibration 

causes the rubber compliance structure on top to 

move up and down, thus forcing the fluid to travel 

between the upper and lower chambers through the 

decoupler and the inertia track. The decoupler in most 

designs, is an open cage containing a moving plate. 

As the fluid moves from one chamber to another, the 

decoupler plate moves in that direction until reaching 

the bottom or top constraints of the decoupler cage. 

The remaining flow is then forced mainly via the 

inertia track. The inertia track is a tube providing the 

engine mount with high damping at large excitation 

amplitudes. In this simple passive device, for small 

amplitude excitations, the fluid passes primarily 

through the decoupler with low resistance, and for 

large excitations the fluid is forced through the higher 

resistance inertia track. The lower chamber, like a 

balloon, is expanded or contracted due to the lower 

compliance rubber. The decoupler action is therefore 
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extremely important to tune the damping and 

frequency of the hydraulic mount and therefore to 

optimize its effectiveness to isolate vibrations. In 

many cases, the designs of these components are 

conducted through trial and error. A proper model of 

the decoupled would allow the designer to study the 

behavior of the hydraulic mount more effectively, and 

it would minimize the development time. This report 

provides a simple nonlinear model of the mount 

decoupled based on basic dynamic and fluid 

principles. 

1. Simulation Model 

The hydraulic engine mount equations may be 

obtained considering an ideal model shown in Figure-

2. As the engine oscillates, it applies a force F(t) to 

the hydraulic mount. Also the engine displacement is 

defined by x(t). The engine displacement pushes 

down the top rubber components, forcing the fluid in 

the top chamber to flow via the inertia track and the 

decoupler to the bottom chamber. Both chambers are 

idealized to have the same cross-sectional area   . 

The following transformation is used to relate the 

flow in the inertia track and the decoupler to the fluid 

velocity respectively: 

Displacement in the inertia track and decoupler 

chambers. 

The momentum equation can be noted with 

assuming the inertia track and the decoupler cross-

sectional areas are Ai and Ad, respectively: 

where the subscripts i and d correspond 

respectively to the inertia track and the decoupler. 

 (    ̇ )  is a nonlinear function depends on the 

function of the decoupler and shows the variation of 

its resistance due to displacement of its plate. The 

proposed function for the decoupler resistance is 

where E is a constant depending on the hydraulic 

mount geometry and must be obtained 

experimentally. The simplest representation of 

 (    ̇ ) is a cubic function which may be used for 

theoretical analysis. 

   and    are the fluid resistances depend on two 

parameters    and   , which are constants depending 

on fluid properties and geometric parameters of the 

corresponding flow channels. That is, 

 

where   and   define if the flow through the 

inertia track or decoupler is laminar or turbulent 

respectively. The mount continuity conditions are 

written as: 

 

 

 

In the case the flow through the inertia track and 

the decoupler is assumed to be laminar,    and    = 1 

and (5) becomes linear. That is, 

 

 
If the equation (8) be arranged and the equation 

(4) is used, the following nonlinear equations of 

motion are obtained: 

 

 
By using the following no dimensional 

parameters, 
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where      and C1 and C2 are the compliance 
(or the capacitance) associated with the upper and 
lower chambers, respectively. Differentiating (2) 
with respect to time, and using (1), (5), and (6), 
the internal hydraulic mount dynamics may be 
derived. The resulting flow equations are written 
as: 

[

  

  
  

 
  

  
 

] {
 ̈ 
 ̈ 
}  

[
 
 
 
 
      

    

 
 

    
 

 
      

    

  
    ]

 
 
 
 

{
 ̇ 
 ̇ 
}  

[
  
  

] {
  
  
}  

 ̇

  
{
 
 
}  

   ̇

  
{
 
 
}                      (7) 

where K 
 

  
 

 

  
, 

[
   
   

] {
 ̈ 
 ̈ 
}  [

   
   

] {
 ̇ 
 ̇ 
}  

[
  
       

       
  

] {
  
  
}   (    ̇ ) {

 
 
}  

   

  
{
  
  
} 

                                                        (8) 

[
  
  

] {
 ̈ 
 ̈ 
}  [

  

  
 

 
  

  
 

 

   
   
 
] {
 ̇ 
 ̇ 
}  

[

  
  

  

     

  

     

  

  
  

  

] {
  
  
}  

   

  
{

  

  
  

  

}                                 (9)   

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.iu

st
.a

c.
ir 

at
 1

8:
09

 IR
S

T
 o

n 
F

rid
ay

 M
ar

ch
 3

rd
 2

01
7

 [
 D

ow
nl

oa
de

d 
fr

om
 c

ss
a.

iu
st

.a
c.

ir
 o

n 
20

25
-1

1-
21

 ]
 

                               2 / 9

http://www.iust.ac.ir/ijae/article-1-352-en.html
https://cssa.iust.ac.ir/ijae/article-1-352-fa.html


 J.Marzbanrad, M.A.Babalooe         2184 

International Journal of Automotive Engineering  Vol. 6, Number 3, Sept 2016 

        
  
  

  
                              

                                                   (10) 

 
the equations of motion (9) become 

 

 
For the non-linearity of the differential equations 

the state variables and the equations of motion is 

assumed: 
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3. Numerical Results 

Owing to the non-linearity of the differential 

equations (12), the dynamic response of the hydraulic 

engine mount model was studied numerically with the 

fourth order Runge–Kutta algorithm provided by 

MATLAB. The absolute error tolerance, in the 

computation, was less than     . Since numerical 

integration could give spurious results with regard to 

the existence of chaotic due to insufficiently small 

time steps, the step size was verified to ensure no 

such results were generated as a result of time 

discretization. The mount parameter set assumed for 

the numerical study is shown in Table 1. 

It is known that the dynamics of a system may be 

analyzed via a frequency-response diagram, which is 

obtained by plotting the amplitude of the oscillating 

system versus the frequency of the excitation term 

[11, 12]. For the mount system, the frequency-

response diagram was calculated numerically. For the 

inertia track and decoupler, the amplitude was defined 

as the maximum absolute value of the displacement 

and the control parameter was defined as the forcing 

frequency of the excitation from engine respectively. 

Fig. 3 represents one of the frequency-response 

diagrams of the model when the forcing frequency f is 

slowly increased. The amplitude of the forcing 

function Y = 0.1 mm. The diagrams were calculated 

by using an increment ∆ω = 0.1 Hz as the variation of 

the control parameter. As illustrated in Figs. 3(a) the 

first jump is observed at ω=70 Hz; then the second 

jump is at ω =120 Hz; then the third jump is at ω 

=155 Hz as forcing frequency increased. The 

phenomenon of the three jumps can also be observed 

in response diagram of the decoupler of hydraulic 

engine mount shown in Fig. 3(b). However, the 

diagram exhibits a more complicated and different 

behavior. This is confirmed by the presence of more 

jumps in this diagram as the forcing frequency 

increased. Fig. 3. shows that the responses of the 

system have instability region as 60<ω<125 Hz and 

143<ω<200 Hz; which indicates that the chaotic 

responses are possible when the forcing frequency is 

near or within the instable region [13–15]. 

 
Cross-section of the hydraulic mount 
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Fig1. A lumped parameter fluid system model of the hydraulic engine mount. 

 

Table 1. Parameters for numerical simulation [21] 

[  ] 5.027e-3    

[  ] 5.72e-5    

[  ] 2.3e-3    

[kg] 0.37e-2    

[kg] 2.645e-2    

2.9095   

[N.s/m] 4.83e-3    
2.9 [N.s/m]    

4.6e-10 [   ⁄ ]    

4.6e-8 [   ⁄ ]    
 

 
(a) 

 
(b) 

Fig2. Frequency-response diagrams when the forcing frequency f is slowly increased (Y =0.1 mm): (a) Inertia track (b) Decoupler
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The bifurcation diagram is a widely used 

technique for examining the changes of responses in a 

dynamic system under parameter variations. To make 

the bifurcation diagram, some measure of the motion 

is plotted as a function of the system parameter. 

As shown in Fig. 4, the bifurcation diagram is 

obtained by plotting the Poincare points of the inertia 

track displacement Xi(t) against the amplitude of 

harmonic engine excitation ω. The amplitude of 

harmonic engine excitation used in the computation 

were ω = 100 Hz. In this diagram, amplitude varied 

from 0 to 0.3 mm according to 1500 equal steps. For 

every parameter amplitude; the responses of the 

system from 0 to 400 s that was 1440 forcing cycles, 

were computed. To eliminate the transient responses, 

only the last 150 points of the Poincare section 

associated with the 150 last periods were saved. The 

initial conditions were set [0,0,0,0] for every 

parameter. The different behavior was observed as the 

values of amplitude were in the range of 0–0.3 mm. 

In Fig. 4, the responses of the system could become 

chaotic very quickly as the amplitude is around 0.21 

mm. This implies that the periodic responses of the 

model may jump to chaotic one even there is only a 

small change in amplitude of harmonic engine 

excitation. 

Fig. 5 represents the bifurcation of Xd(t) by 

varying the values of the parameter amplitude from 0 

to 0.3mm according to 1500 equal steps. The time 

span for the computation was from 0 to 400 s and The 

initial condition was set to [0,0,0,0]. As the 

computation for Fig. 4, the last 150 Poincare points 

were preserved for plotting the diagram. The 

enlargements of the diagram in Fig. 5 are shown in 

Figs. 6. These bifurcation diagrams exhibit period 

windows and crisis as the time delay amplitude is 

around 0.18<Y<0.3 mm. 

 

 

Fig3. The bifurcation diagram of the inertia track 

 

 

The bifurcation diagram of decoupler 
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Fig4. Enlargements of the bifurcation diagram of Fig. 3. 

 

 

 

 

Fig5. Time histories of chaotic motion of the system (Y = 0.03 mm;   =100 Hz; the remaining parameters are shown in Table 1). 
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Fig6. Poincare maps of chaotic motion of the system (Y =0.01 mm;   = 100 Hz).

 

 

 

 

 

One of the time histories of Xi(t) and Xd(t) are 

plotted in Fig. 7. The time history data of the first 

1700 forcing cycles were not used in order to 

guarantee that the data used were in a steady state. 

The Poincare maps of the responses of the engine 

mount corresponding to time histories in Fig. 7 are 

shown in Fig. 8. Each Poincare map contains 4200 

sampling points. Fig. 8 shows the existence strange 

attractors. These results indicated that the responses 

of the system of hydraulic engine mount were chaotic. 
 

 

 

 

 

 

Conclusion 

The chaotic responses and bifurcations of a 

hydraulic engine mount model are studied through 

numerical simulation. It is found that the chaotic 

response may exist in the instable region of 

frequency-response diagram. The bifurcation diagram 

shows that the chaotic response could be sensitive to 

variation of amplitude of the harmonic engine 

excitation. Although the mechanical model of the 

hydraulic engine mount is only a simplified one and 

the parameters used do not agree closely with the 

practical data for an automobile, the results may still 

be useful in dynamic design of the ground vehicle. 

The confirmation of the existence of the chaos in this 

kind of model by experiment is left for further study. 
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